Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Latin: A Linguistic Introduction

By Renato Oniga and Norma Shifano

Applies the principles of contemporary linguistics to the study of Latin and provides clear explanations of grammatical rules alongside diagrams to illustrate complex structures.


New from Cambridge University Press!

ad

The Ancient Language, and the Dialect of Cornwall, with an Enlarged Glossary of Cornish Provincial Words

By Frederick W.P. Jago

Containing around 3,700 dialect words from both Cornish and English,, this glossary was published in 1882 by Frederick W. P. Jago (1817–92) in an effort to describe and preserve the dialect as it too declined and it is an invaluable record of a disappearing dialect and way of life.


New from Brill!

ad

Linguistic Bibliography for the Year 2013

The Linguistic Bibliography is by far the most comprehensive bibliographic reference work in the field. This volume contains up-to-date and extensive indexes of names, languages, and subjects.


Academic Paper


Title: Interpreting compound nouns with kernel methods
Author: Diarmuid Ó Séaghdha
Institution: Computer Laboratory, University of Cambridge, UK
Author: Ann Copestake
Email: click here to access email
Homepage: http://www-csli.stanford.edu/~aac/
Institution: Stanford University
Linguistic Field: Computational Linguistics
Abstract: This paper presents a classification-based approach to noun–noun compound interpretation within the statistical learning framework of kernel methods. In this framework, the primary modelling task is to define measures of similarity between data items, formalised as kernel functions. We consider the different sources of information that are useful for understanding compounds and proceed to define kernels that compute similarity between compounds in terms of these sources. In particular, these kernels implement intuitive notions of lexical and relational similarity and can be computed using distributional information extracted from text corpora. We report performance on classification experiments with three semantic relation inventories at different levels of granularity, demonstrating in each case that combining lexical and relational information sources is beneficial and gives better performance than either source taken alone. The data used in our experiments are taken from general English text, but our methods are also applicable to other domains and potentially to other languages where noun–noun compounding is frequent and productive.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 19, Issue 3, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page