Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Speaking American: A History of English in the United States

By Richard W. Bailey

"Takes a novel approach to the history of American English by focusing on hotbeds of linguistic activity throughout American history."


New from Cambridge University Press!

ad

Language, Literacy, and Technology

By Richard Kern

"In this book, Richard Kern explores how technology matters to language and the ways in which we use it. Kern reveals how material, social and individual resources interact in the design of textual meaning, and how that interaction plays out across contexts of communication, different situations of technological mediation, and different moments in time."


Academic Paper


Title: Automated unsupervised authorship analysis using evidence accumulation clustering
Author: Robert Layton
Institution: University of Sheffield
Author: Paul Watters
Homepage: http://www.comp.mq.edu.au/~pwatters
Institution: University of Sheffield
Author: Richard Dazeley
Institution: The University of Ballarat
Linguistic Field: Computational Linguistics; Text/Corpus Linguistics
Abstract: Authorship Analysis aims to extract information about the authorship of documents from features within those documents. Typically, this is performed as a classification task with the aim of identifying the author of a document, given a set of documents of known authorship. Alternatively, unsupervised methods have been developed primarily as visualisation tools to assist the manual discovery of clusters of authorship within a corpus by analysts. However, there is a need in many fields for more sophisticated unsupervised methods to automate the discovery, profiling and organisation of related information through clustering of documents by authorship. An automated and unsupervised methodology for clustering documents by authorship is proposed in this paper. The methodology is named NUANCE, for n-gram Unsupervised Automated Natural Cluster Ensemble. Testing indicates that the derived clusters have a strong correlation to the true authorship of unseen documents.

CUP AT LINGUIST

This article appears IN Natural Language Engineering Vol. 19, Issue 1, which you can READ on Cambridge's site or on LINGUIST .



Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page