Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Holy Sh*t: A Brief History of Swearing

By Melissa Mohr

Holy Sh*t: A Brief History of Swearing "contains original research into the history of swearing, and is scrupulous in analyzing the claims of other scholars."


New from Cambridge University Press!

ad

A New Manual of French Composition

By R. L. Graeme Ritchie

A New Manual of French Composition "provides a guide to French composition aimed at university students and the higher classes in schools. "


The LINGUIST List is dedicated to providing information on language and language analysis, and to providing the discipline of linguistics with the infrastructure necessary to function in the digital world. LINGUIST is a free resource, run by linguistics students and faculty, and supported primarily by your donations. Please support LINGUIST List during the 2016 Fund Drive.

Academic Paper


Title: Interpreting compound nouns with kernel methods
Author: Diarmuid Ó Séaghdha
Institution: Computer Laboratory, University of Cambridge, UK
Author: Ann Copestake
Email: click here TO access email
Homepage: http://www-csli.stanford.edu/~aac/
Institution: Stanford University
Linguistic Field: Computational Linguistics
Abstract: This paper presents a classification-based approach to noun–noun compound interpretation within the statistical learning framework of kernel methods. In this framework, the primary modelling task is to define measures of similarity between data items, formalised as kernel functions. We consider the different sources of information that are useful for understanding compounds and proceed to define kernels that compute similarity between compounds in terms of these sources. In particular, these kernels implement intuitive notions of lexical and relational similarity and can be computed using distributional information extracted from text corpora. We report performance on classification experiments with three semantic relation inventories at different levels of granularity, demonstrating in each case that combining lexical and relational information sources is beneficial and gives better performance than either source taken alone. The data used in our experiments are taken from general English text, but our methods are also applicable to other domains and potentially to other languages where noun–noun compounding is frequent and productive.

CUP AT LINGUIST

This article appears IN Natural Language Engineering Vol. 19, Issue 3, which you can READ on Cambridge's site or on LINGUIST .



Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page