Publishing Partner: Cambridge University Press CUP Extra Wiley-Blackwell Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

The Vulgar Tongue: Green's History of Slang

By Jonathon Green

A comprehensive history of slang in the English speaking world by its leading lexicographer.


New from Cambridge University Press!

ad

The Universal Structure of Categories: Towards a Formal Typology

By Martina Wiltschko

This book presents a new theory of grammatical categories - the Universal Spine Hypothesis - and reinforces generative notions of Universal Grammar while accommodating insights from linguistic typology.


New from Brill!

ad

Brill's MyBook Program

Do you have access to Dynamics of Morphological Productivity through your library? Then you can by the paperback for only €25 or $25! Find out more about Brill's MyBook program!


Academic Paper


Title: Interpreting compound nouns with kernel methods
Author: Diarmuid Ó Séaghdha
Institution: Computer Laboratory, University of Cambridge, UK
Author: Ann Copestake
Email: click here to access email
Homepage: http://www-csli.stanford.edu/~aac/
Institution: Stanford University
Linguistic Field: Computational Linguistics
Abstract: This paper presents a classification-based approach to noun–noun compound interpretation within the statistical learning framework of kernel methods. In this framework, the primary modelling task is to define measures of similarity between data items, formalised as kernel functions. We consider the different sources of information that are useful for understanding compounds and proceed to define kernels that compute similarity between compounds in terms of these sources. In particular, these kernels implement intuitive notions of lexical and relational similarity and can be computed using distributional information extracted from text corpora. We report performance on classification experiments with three semantic relation inventories at different levels of granularity, demonstrating in each case that combining lexical and relational information sources is beneficial and gives better performance than either source taken alone. The data used in our experiments are taken from general English text, but our methods are also applicable to other domains and potentially to other languages where noun–noun compounding is frequent and productive.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 19, Issue 3, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page