Publishing Partner: Cambridge University Press CUP Extra Wiley-Blackwell Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Words in Time and Place: Exploring Language Through the Historical Thesaurus of the Oxford English Dictionary

By David Crystal

Offers a unique view of the English language and its development, and includes witty commentary and anecdotes along the way.


New from Cambridge University Press!

ad

Thesaurus of English Words and Phrases

By Peter Mark Roget

This book "supplies a vocabulary of English words and idiomatic phrases 'arranged … according to the ideas which they express'. The thesaurus, continually expanded and updated, has always remained in print, but this reissued first edition shows the impressive breadth of Roget's own knowledge and interests."


New from Brill!

ad

The Brill Dictionary of Ancient Greek

By Franco Montanari

Coming soon: The Brill Dictionary of Ancient Greek by Franco Montanari is the most comprehensive dictionary for Ancient Greek to English for the 21st Century. Order your copy now!


Academic Paper


Title: Our statistical intuitions may be misleading us: Why we need robust statistics
Author: Jenifer Larson-Hall
Email: click here to access email
Institution: Kyushu University
Linguistic Field: Discipline of Linguistics; Language Acquisition
Abstract: Most academics' intuitions about statistics follow those of naive laypeople – that is, we often think that a sample should reflect the population characteristics more closely than it does, and expect less variability in samples than is truly found in them. These intuitions may prevent us from understanding why modern developments in statistics are needed. Another intuition most researchers hold is that it is better to be conservative when performing statistics, and this may involve adjusting p-values for multiple tests, using more conservative post hoc tests, or setting an alpha value lower than .05 when possible. However, the more we try to control against making an error in being overeager to find differences, the stronger the probability that we will make an error in not finding differences that actually exist. These two forces need to be counterbalanced, and this involves increasing the power of our tests. Robust statistics can increase the power of statistical tests to find real differences. I discuss the need for robust techniques to avoid reliance on classical assumptions about the data. Examples of robust analyses with t-tests, correlation, and one-way ANOVA are shown.

CUP at LINGUIST

This article appears in Language Teaching Vol. 45, Issue 4, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page