Publishing Partner: Cambridge University Press CUP Extra Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Raciolinguistics

Edited by H. Samy Alim, John R. Rickford, and Arnetha F. Ball

Raciolinguistics "Brings together a critical mass of scholars to form a new field dedicated to theorizing and analyzing language and race together."


New from Cambridge University Press!

ad

Sociolinguistics from the Periphery

By Sari Pietikäinen, FinlandAlexandra Jaffe, Long BeachHelen Kelly-Holmes, and Nikolas Coupland

Sociolinguistics from the Periphery "presents a fascinating book about change: shifting political, economic and cultural conditions; ephemeral, sometimes even seasonal, multilingualism; and altered imaginaries for minority and indigenous languages and their users."


Academic Paper


Title: Estimating the number of segments for improving dialogue act labelling
Author: Vicent Tamarit
Institution: Universidad Politécnica de Valencia
Author: Carlos-D. Martínez-Hinarejos
Institution: Universidad Politécnica de Valencia
Author: José-Miguel Benedí
Institution: Universidad Politécnica de Valencia
Linguistic Field: Computational Linguistics; Text/Corpus Linguistics
Abstract: In dialogue systems it is important to label the dialogue turns with dialogue-related meaning. Each turn is usually divided into segments and these segments are labelled with dialogue acts (DAs). A DA is a representation of the functional role of the segment. Each segment is labelled with one DA, representing its role in the ongoing discourse. The sequence of DAs given a dialogue turn is used by the dialogue manager to understand the turn. Probabilistic models that perform DA labelling can be used on segmented or unsegmented turns. The last option is more likely for a practical dialogue system, but it provides poorer results. In that case, a hypothesis for the number of segments can be provided to improve the results. We propose some methods to estimate the probability of the number of segments based on the transcription of the turn. The new labelling model includes the estimation of the probability of the number of segments in the turn. We tested this new approach with two different dialogue corpora: Switchboard and Dihana . The results show that this inclusion significantly improves the labelling accuracy.

CUP AT LINGUIST

This article appears IN Natural Language Engineering Vol. 18, Issue 1.

Return to TOC.

Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page