Publishing Partner: Cambridge University Press CUP Extra Wiley-Blackwell Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Words in Time and Place: Exploring Language Through the Historical Thesaurus of the Oxford English Dictionary

By David Crystal

Offers a unique view of the English language and its development, and includes witty commentary and anecdotes along the way.


New from Cambridge University Press!

ad

Thesaurus of English Words and Phrases

By Peter Mark Roget

This book "supplies a vocabulary of English words and idiomatic phrases 'arranged … according to the ideas which they express'. The thesaurus, continually expanded and updated, has always remained in print, but this reissued first edition shows the impressive breadth of Roget's own knowledge and interests."


New from Brill!

ad

The Brill Dictionary of Ancient Greek

By Franco Montanari

Coming soon: The Brill Dictionary of Ancient Greek by Franco Montanari is the most comprehensive dictionary for Ancient Greek to English for the 21st Century. Order your copy now!


Academic Paper


Title: Document ranking refinement using a Markov random field model
Author: Esaú Villatoro
Institution: National Institute of Astrophysics
Author: Antonio Juárez
Institution: National Institute of Astrophysics
Author: Manuel Montes
Institution: National Institute of Astrophysics
Author: Luis Villaseñor
Institution: National Institute of Astrophysics
Author: Enrique L. Sucar
Institution: National Institute of Astrophysics
Linguistic Field: Computational Linguistics; Text/Corpus Linguistics
Abstract: This paper introduces a novel ranking refinement approach based on relevance feedback for the task of document retrieval. We focus on the problem of ranking refinement since recent evaluation results from Information Retrieval (IR) systems indicate that current methods are effective retrieving most of the relevant documents for different sets of queries, but they have severe difficulties to generate a pertinent ranking of them. Motivated by these results, we propose a novel method to re-rank the list of documents returned by an IR system. The proposed method is based on a Markov Random Field (MRF) model that classifies the retrieved documents as relevant or irrelevant. The proposed MRF combines: (i) information provided by the base IR system, (ii) similarities among documents in the retrieved list, and (iii) relevance feedback information. Thus, the problem of ranking refinement is reduced to that of minimising an energy function that represents a trade-off between document relevance and inter-document similarity. Experiments were conducted using resources from four different tasks of the Cross Language Evaluation Forum (CLEF) forum as well as from one task of the Text Retrieval Conference (TREC) forum. The obtained results show the feasibility of the method for re-ranking documents in IR and also depict an improvement in mean average precision compared to a state of the art retrieval machine.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 18, Issue 2, which you can read on Cambridge's site .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page