Publishing Partner: Cambridge University Press CUP Extra Wiley-Blackwell Publisher Login
amazon logo
More Info


New from Oxford University Press!

ad

Language Planning as a Sociolinguistic Experiment

By: Ernst Jahr

Provides richly detailed insight into the uniqueness of the Norwegian language development. Marks the 200th anniversary of the birth of the Norwegian nation following centuries of Danish rule


New from Cambridge University Press!

ad

Acquiring Phonology: A Cross-Generational Case-Study

By Neil Smith

The study also highlights the constructs of current linguistic theory, arguing for distinctive features and the notion 'onset' and against some of the claims of Optimality Theory and Usage-based accounts.


New from Brill!

ad

Language Production and Interpretation: Linguistics meets Cognition

By Henk Zeevat

The importance of Henk Zeevat's new monograph cannot be overstated. [...] I recommend it to anyone who combines interests in language, logic, and computation [...]. David Beaver, University of Texas at Austin


Academic Paper


Title: 'A general feature space for automatic verb classification'
Author: EricJoanis
Institution: 'University of Toronto'
Author: SuzanneStevenson
Institution: 'University of Toronto'
Author: DavidJames
Institution: 'University of Toronto'
Linguistic Field: 'Computational Linguistics; Semantics'
Abstract: Lexical semantic classes of verbs play an important role in structuring complex predicate information in a lexicon, thereby avoiding redundancy and enabling generalizations across semantically similar verbs with respect to their usage. Such classes, however, require many person-years of expert effort to create manually, and methods are needed for automatically assigning verbs to appropriate classes. In this work, we develop and evaluate a feature space to support the automatic assignment of verbs into a well-known lexical semantic classification that is frequently used in natural language processing. The feature space is general – applicable to any class distinctions within the target classification; broad – tapping into a variety of semantic features of the classes; and inexpensive – requiring no more than a POS tagger and chunker. We perform experiments using support vector machines (SVMs) with the proposed feature space, demonstrating a reduction in error rate ranging from 48% to 88% over a chance baseline accuracy, across classification tasks of varying difficulty. In particular, we attain performance comparable to or better than that of feature sets manually selected for the particular tasks. Our results show that the approach is generally applicable, and reduces the need for resource-intensive linguistic analysis for each new classification task. We also perform a wide range of experiments to determine the most informative features in the feature space, finding that simple, easily extractable features suffice for good verb classification performance.

CUP at LINGUIST

This article appears in Natural Language Engineering Vol. 14, Issue 3, which you can read on Cambridge's site or on LINGUIST .



Back
Add a new paper
Return to Academic Papers main page
Return to Directory of Linguists main page